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BOOK REVIEW

Machines Like Us: Toward AI with Common Sense Ronald J. Brachman and Hector J. Levesque 
(2022) 320pp., $US25 (paperback), MIT Press, Cambridge MA, ISBN 9780262547321

Since its birth in the 1940s, the field of artificial intelligence has been divided into two camps, one 
focused on artificial neural networks and the other on reasoning with symbolic representations of 
knowledge. The symbolic representational approach firmly dominated the field until 2012, when a 
neural network named ‘AlexNet’ handily won an algorithm competition for recognizing objects in 
images (Krizhevsky et al., 2012). Further convincing successes of neural network algorithms for 
speech recognition, the game of Go (Silver et al., 2017), and other problems that had long eluded 
the KR approach soon followed. Today, neural networks, under the banner of ‘deep learning’, where 
‘deep’ refers to the fact that the artificial neurons are arranged in many layers, dominate research 
and commercial applications. Most students studying AI learn little about knowledge representa-
tion, and the approach is rarely mentioned in news stories and popular accounts of AI.

It would be a grave error, however, to conclude that the more than 50 years of research in 
knowledge representation and reasoning yielded no insights about the nature of computational 
intelligence.  We are beginning to see deep learning researchers struggling with issues that have 
long been studied in knowledge representation, such as the nature of the concepts and categories 
that an AI system must employ to make sense of the world – an issue sometimes identified as ‘learn-
ing disentangled representations’ (Bengio et al., 2013).

Furthermore, even today’s most sophisticated deep learning systems are unreliable, in that 
they can unexpectedly and catastrophically fail on certain inputs. For example, at the time of writing 
this review, OpenAI’s ChatGPT is the most powerful natural language processing system ever cre-
ated, and its fluency in producing text has led some people wrongly to conclude that it must be 
conscious. It is not difficult, however, to find examples when ChatGPT produces plausible- 
sounding but entirely erroneous ‘hallucinated’ answers (Hofstadter, 2022). One path to trustworthy 
AI may be to base systems on explicit and validated representations of what they know and do not 
know (Marcus and Davis 2019). It is therefore timely that Machines Like Us: Toward AI with 
Common Sense has appeared to remind us of the insights developed by the knowledge representa-
tion research community and to restate fundamental open problems that cannot even be stated with-
out reference to how an intelligent being represents and reasons about the world. 

Ronald Brachman and Hector Levesque are two pre-eminent researchers in the knowledge 
representation and reasoning tradition, individually and jointly publishing many influential papers 
from the 1980s through the present day. Brachman is best known for showing how so-called ‘seman-
tic networks’, a graph-based knowledge representation approach that had been developed in the 
earliest days of AI and which is still in widespread use (including by Google and Facebook under 
the name of ‘knowledge graphs’) could be viewed as object-oriented versions of first-order logic 
(Brachman and Schmolze, 1985). Levesque collaborated on some of this work and went on to 
develop logic-based methods for reasoning about beliefs and plans (Levesque et al., 1997). In 2012, 
Levesque and two other collaborators, Ernie Davis and Leora Morgenstern, introduced Winograd 
schemas, a way to create challenge problems for natural language processing systems that could 
only be disambiguated by using commonsense knowledge; these problems have become a part of 
standard benchmark sets for such systems (Levesque et al., 2012).

The book begins by defining what the authors mean by commonsense: ‘the ability to make 
effective use of ordinary, everyday, experiential knowledge in achieving ordinary, everyday, practi-
cal goals’. They note that commonsense is related to but is more specialized than rationality, which 
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puts no restrictions on the complexity of the task or the amount of reasoning required. They further 
distinguish commonsense knowledge, ‘facts, patterns, principles, and generalizations’, from com-
monsense reasoning, ‘the ability to make use of that knowledge in certain ways’. These two themes 
of representation and reasoning are entwined throughout the book, although they can be separated; 
I shall have more to say on this separation below.  There follows a summary of the history of knowl-
edge representation in AI, from John McCarthy’s 1959 paper, ‘Programs with common sense’, 
which proposed using first-order logic to represent knowledge and automated deduction for reason-
ing, through the era of expert systems in the 1970s and 1980s to today’s emphasis on deep learning.

We then come to what I consider to be the most valuable part of the book, the three chapters 
that discuss what it means to represent knowledge (Chapter 4), a general classification or ontology 
of kinds of knowledge (Chapter 5), and a further categorization of kinds of commonsense knowl-
edge (Chapter 6). In the first of these chapters, the authors note that the seventeenth-century phi-
losopher Gottfried Leibniz discovered the fundamental principles of knowledge representation: 

It is obvious that if we could find characters or signs suited for expressing all our thoughts as clearly 
and as exactly as arithmetic expresses numbers or geometry expresses lines, we could do in all mat-
ters insofar as they are subject to reasoning all that we can do in arithmetic and geometry. For all 
investigations which depend on reasoning would be carried out by transposing these characters and 
by a species of calculus.1

These principles were made concrete in the development of formal logic over the following 
centuries but are more general than any particular system of logic. All that is required is that there 
are symbols that represent real-world entities and relationships over entities; rules for combining 
symbols into expressions that can be interpreted as representing states of affairs in the world; and 
rules for mechanically manipulating expressions that represent reasoning over states of affairs. In 
propositional or predicate logic, the symbols are strings, the expressions are sentences recursively 
constructed from symbols and the rules for reasoning represent logical deduction; however, a 
knowledge representation system can compose symbols in other manners, such as graphs, and the 
manipulation rules can represent other forms of reasoning, such as prototypical (default) reasoning 
or probabilistic reasoning. The fact that people can talk about what they know, what other people 
believe, what would hold if something other held (counterfactuals) and can learn about the real 
world by reading strings of symbols, can all be explained if humans employ some kind of knowl-
edge representation and reasoning. ‘What alternative to the KR hypothesis is there for common 
sense in AI systems?’, the authors write, ‘The answer: so far, none.’

Chapter 5 outlines the general phenomena that a knowledge representation system must 
distinguish as presuppositions to any specific knowledge about some domain of concern; in other 
words, ‘a theory of everything’.  This includes that there are things, some physical (‘owls, refrig-
erators, and lakes’) and some non-physical (‘numbers, beliefs, and stories’). Time points are line-
arly ordered non-physical things. Things may come into or out of existence at a time point and have 
properties – relationships to other things – that may be fixed or may be relative to time. Events are 
non-physical things that occur at a time point or over a sequence of time points that cause properties 
of other things to change. From this basis, the authors go on to describe what has been called ‘naive 
physics’, the way we think about physical objects and their properties – even when we are doing 
science and engineering, except perhaps in the most extreme regions of quantum mechanics. They 
go on to outline naive psychology, what is commonly referred to as ‘theory of mind’ in the cogni-
tive science literature, and causality. The reader who has never built an AI system may be forgiven 
for thinking that all of this is too obvious – too necessary – to state. A computer program by itself 
knows none of this. In most programs, the way the world is broken down into things and relation-
ships is highly simplified and only implicitly defined. A database system, for example, might 

1See https://www.artandpopularculture.com/Gottfried_Leibniz (accessed August 2023).
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include a table of employees and salaries, and allow a user to run a query to find the average salary 
of employees. This presupposes that there are things called ‘employees’ and that each has a prop-
erty called ‘salary’, which is a number. For an AI system to reason about and act in the world, 
however, it must internalize something like this theory of everything. Most work in the knowledge 
representation tradition would have the programmer – or perhaps a community of contributors – 
manually build the theory into the system. If we think of humans as an AI system, this would be 
assuming that such fundamental concepts are hardwired into our brains by evolution. Researchers 
in psychology or AI who favor a clean-slate notion of human or machine intelligence might say it 
is all learned, although as I noted above in my comment on learning disentangled representations, 
it is a challenge to make deep learning systems even to discover that physical objects have general 
properties, such as size or color. The next chapter drills down into more details about what is 
required to represent commonsense knowledge, including general concepts (e.g., birthday parties); 
prototypical or default properties of such concepts (e.g., birthday parties are held on or near the 
honoree’s birthday); and information about specific individuals or events (e.g., Sarah had her party 
a month after her birthday). Kinds of events include in their representation the sub-events that they 
typically, but do not necessarily, contain (e.g., a birthday party includes games, serving cake, sing-
ing Happy Birthday, etc.). 

Chapters 7 through 9 describe a way to implement this kind of knowledge representation 
and a series of algorithms for performing reasoning and planning. It draws on the technical work by 
Brachman on semantic networks and Levesque on automated planning. The authors avoid familiar 
logical notation or computer languages, such as LISP or Python, to make the material clear to a lay 
reader, and in this, they succeed. The appendix summarizes the language and algorithms, and it 
would be straightforward for a moderately proficient programmer to turn them into working code. 
Algorithms are described for bottom-up reasoning, for interpreting observations, and top-down 
reasoning, for generating plans.  

One of the key ideas of these chapters is that commonsense reasoning enables an AI system 
to act appropriately in the face of unforeseen events. The authors present the example of an agent 
driving to a store when something unexpected occurs; after they stop at a red light, the signal does 
not change to green after five minutes. The agent must find an explanation for the anomaly to repair 
the plan and finding the explanation may require the use of many kinds of commonsense knowl-
edge. For example, the signal light may simply be broken, so an appropriate response would be to 
make a U-turn, go down a block, and then cross at the next intersection. Alternatively, suppose the 
driver hears an approaching marching band and the date is 4 July.  In this case, the best explanation 
for the failure is that the street has been closed for a parade, and the agent should find a route to the 
store that does not involve crossing it, or if one does not exist, change their goal to go to a different 
but similar store.

While the examples of commonsense reasoning in action in these chapters are thought-
provoking, many people (including myself) may find the proposed reasoning algorithms inade-
quate. There is an unlimited number of explanations for any observation or failure of expectations. 
It is surely necessary to have a general and consistent way of choosing the most likely interpretation 
or explanation – in other words, to reason probabilistically. There is a long but unsuccessful history 
in AI of attempts to use prototypes and defaults to handle uncertainty.  These attempts failed because 
absent quantitative probabilities, one must include explicit rules that break ties between every com-
peting hypothesis under every possible condition of the world.  The number of prototypical or 
default rules becomes astronomical. Between the height of the knowledge representation and rea-
soning era in AI and the current deep learning era was what was known as the ‘Bayesian revolution 
in AI’, when work on Bayesian probabilistic methods for reasoning and learning dominated the 
field (Pearl, 1988). The Bayesian revolution was sparked by Judea Pearl’s introduction of Bayesian 
networks, a way to represent knowledge about probability in a graph-based form. Bayesian net-
works and related formalisms extend classical probability theory with what is called the ‘maximum 
entropy assumption’, which is a kind of single, general default rule that formalizes the notion of all 
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things being equal. Bayesian networks are a perfectly good knowledge representation in Leibniz’s 
sense and have the advantage of providing a probabilistic sound way to use the context of a knowl-
edge base – what is not known as well as what is known – for interpretation or planning. (Prototypes 
or defaults can be thought of as a coarser instrument for using such context.) Bayesian networks are 
a subclass of a more general class of representations named ‘graphical models’, so-called because 
their syntax is based on graphs rather than on sentences, as in propositional or first-order logic. One 
of the hot topics in research in deep learning is determining the conditions under which artificial 
neural networks can be viewed as implementing inference in a graphical model; success in this 
endeavor would allow us to understand neural networks as a knowledge representation scheme, 
rather than as an algorithmic black box (e.g., Patel et al., 2016).

It is unfair, however, to criticize a book for what it does not try to do. Machines Like Us 
succeeds brilliantly in making the results of decades of work in knowledge representation accessi-
ble and relevant to lay readers and the current generation of AI researchers. Almost no work in deep 
learning has even attempted to develop a ‘theory of everything’ for the physical, mental or social 
worlds, as the authors have attempted in this book. I hope it may inspire others – in particular ones 
equipped with the tools of probabilistic models and machine learning – to take on the challenges.
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