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An inductive model of technological progress
John Enos* and Alison Etheridge

Magdalen College, Oxford, OX1 44U, UK

The purposes of this paper are threefold: to suggest a conceptual scheme which
encompasses innovations and improvements in industry; to express this scheme in
the mathematical form of Poisson jump processes; and, finally, to illustrate it with
a sequence of cost data drawn from three-quarters of a century of company
operations. In the stochastic process, three parameters summarise the events: (i)
random intervals between innovations, (ii) different random intervals between
improvements, and (iii) the rate at which the benefits of improvements decay over
time. The fit between the model’s performance, on the one hand, and the cost data,
on the other, is good: the theoretical deductions and the actual cost series bear a
close resemblance. Most models of technological progress are based upon the
mere passage of time, whereas this model stems from the events.

Definition of terms

A technology itself is a coherent and interrelated set of ideas, and, possibly, if one
wants a broad definition, the social, political and economic institutions within which
the operation is performed. In the case of industrial innovations, the set of ideas
comprising the technology is based upon fundamental physical and chemical princi-
ples; a different set of ideas, based upon different physical and chemical principles,
would constitute a different technology.

We divide technical change, the motive force, into two elements: by the first —
innovation — we mean the invention and initial development of a new technology,
terminating when it (the technology) is incorporated into a set of artefacts whose oper-
ation yields useful products. Assembling a proper collection of artefacts and integrat-
ing them so as to reflect, in the form of a physical analogue, the principles inherent in
the technology may well yield an innovation; but unless the assembly yields either an
entirely novel product, or a familiar product more cheaply, progress is halted at the
stage of the innovation. Historically, there have been examples of technologies
realised as innovations, but not passing the test of economic profitability. It is our wish
to note the possibility of technological success followed by economic failure that
leads us to make the distinction.

The second of our terms is improvement, meaning reduction in the amount of
resources needed to carry out its application. Although, as we shall see, an improve-
ment may have a major effect economically, in the sense of reducing substantially the
cost of applying the technology, its technological effect is not so grand as to alter the
basic set of ideas or the conjunction of artefacts within which these ideas are made
manifest.
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Innovations and improvements in petroleum refining

The statistical evidence that provides the basis for our inductive model of growth is
derived from the four innovations and sets of improvements that, since their origin,
have formed the heart of the major petroleum refining processes; these processes are
collectively called ‘cracking’. (In the cracking process, the large hydrocarbon mole-
cules comprising heavy petroleum oils, useful in their crude form as industrial fuels
only, are split or ‘cracked’ into smaller molecules, useful chiefly as motor gasoline or
diesel fuel.) The first cracking innovation occurred in 1911/2, and improvements to
the fourth cracking innovation have continued up to the last year of our inquiry, 2000.
Our statistics cover the period from the initial date until 1987; historically they
represent an uninterrupted sequence of 75 years.

The data relevant to this paper appear in Table 1, recording the intervals of time
elapsing between innovations (four in total, occurring in 1911/12, 1921, 1936 and
1942), and between the improvements succeeding each innovation (20 all told, occur-
ring in the intervals between innovations). Table 2 records the successive reductions
in costs of manufacturing motor gasoline by cracking as consequences of the applica-
tion of the innovations and improvements.

There are three conclusions that we wish to draw from the data in Tables 1 and 2.
The first is that the sizes of the time intervals between innovations and improvements,
in Table 1, and of the cost reductions following the innovations (i.e., the data in all
rows but the first), in Table 2, appear to be random. Successive intervals between
improvements are read down the columns in Table 1, and successive reductions in
cost down the columns of Table 2.

The second conclusion that we draw from the data is that the appearance of an
innovation does not immediately lower the cost of manufacture. This conclusion is
evident in the first row of numbers in Table 2, the first of which is irrelevant (since
the technology — the cracking of gas oil at elevated temperature and pressure for
gasoline — had never been attempted before), and the next three of which are zero
(indicating that the profitability of operating the plant that incorporated the innovation
was the same as that of operating the most efficient contemporary plant incorporating
the previous technology).

The third conclusion is that, within a given technology, successive improvements
are, on average, of diminishing importance in terms of reducing costs. This conclusion
is supported by the averages of the individual cost data reported in the final column
of Table 2, and is consistent with the arguments of Enos (1958) and Rosenberg (1982)

Table 1. Time intervals in years between improvements, by regime, 1911/12 to 1987

Regime 1 1I il v

Dates 1911/2-1921 1921-1936 1936-1942 1942-1987 Average
End previous regime to innovation 1 1 0.8 1.1 1
Innovation to first improvement 1 1 3 12 4
First improvement to second 1 3 0.5 5 24
Second improvement to third 0.25 5 2 4 2.8
Third improvement to fourth 2 5 - 13 6.7
Fourth improvement to fifth - - - 10 10

Sources: Enos (1962), particularly Table 1, p. 42; and Enos (2002), Tables 8.1 and 8.6a.
Improvements for Regimes II and III are calculated from engineering reports and refinery records.
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Table 2. Cost reductions between regimes and between improvements, 1911/2 to 1987

Regime I II I v

Dates 1911/2-1921 1921-1936 1936-1942 1942-1987 Average
End previous regime to innovation 13(a) 0 0 0 0
Innovation to first improvement 17 31 17 22 22
First improvement to second 8 4 29 22 16
Second improvement to third 8 2 19 25 13.5
Third improvement to fourth 2 20 10 13.5 11
Fourth improvement to fifth 12 11 - 6 9.7
Fifth improvement to sixth - — - 0.83(b) 0.8

Notes: (a) The raw material was not used, and the main product was not produced, before the innovation;
(b) average of several simultaneous improvements, estimated from contemporaneous records.
Sources: As for Table 1

that, with the passage of time and effort, the further potential for improvement of a
technology diminishes. At the time of its introduction, any technology has a potential
for improvement, the most significant part of which is quickly exploited, usually by
the innovators themselves (Tyre, 1992). As time passes, less and less significant parts
of the potential remain to be exploited, yielding smaller and smaller increments of
gain. The individual observations of reductions in cost may seem to be random, but
the general trend, as shown by the averages in the last column of Table 2, indicate a
steady decline over the life of a technology.

The model

The inductive model detailed in Appendix 1 is the simplest that reflects these three
observations. The times of innovations and the times of improvements will each be
modelled as a Poisson process. An innovation in our model will not be accompanied
immediately by an increase in productivity. This reflects the equality of costs of
operating the most efficient plant under the previous technology, and the first plant
using the new technology. The logarithm of the increase in productivity at the time
of an improvement will be modelled as a random variable (independently for each
improvement) that we deflate exponentially with the time since the most recent
innovation.

Through time, the trajectory exhibited by the model follows a staggering path. If
the measure of advance is the increase in the productivity with which resources are
applied (in our case, the inverse of the reductions in cost), and if one starts on the path
at the time of the first innovation, the pace will be fastest (that is, the jump will be
biggest) soon afterwards, when the first improvement occurs. Thereafter, there will
be a random series of improvements, yielding random increases in productivity. In
the calculations in Appendix 1 we calculate the expected increase in the logarithm of
the productivity over any given time interval. The results are equivalent to those
obtained by approximating this by a smooth progression of improvements (by
substituting the expected value of the random variable that dictates the size of the
improvement). Interrupting the progression of improvements will be the next innova-
tion, whose plant exhibits a productivity exactly equal to the productivity attained by
the improved version of the plant incorporating the technology associated with the
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previous innovation — in this case, the initial innovation that began the journey along
the path. In Figure 1 the vertical axis represents some measure of productivity with
which resources are used; the horizontal axis represents some measure of the course
of events (usually the passage of time). The three phenomena captured by the model
can be seen in any graph of productivity: first, the irregular appearance of new tech-
nologies (the timing of the leaps from a previous to a subsequent regime) and of
improvements (the timing of the upward steps in productivity); secondly, the random
height of successive steps (improvements) within a given regime; and, thirdly, the
equal productivities of the plant providing the last observation of the previous regime
and of the plant providing the first observation of its successor (the horizontality of
leaps; ‘long jumps’, not ‘high jumps’). This is illustrated by Figure 1, where we have
plotted increases in productivity in the petroleum cracking industry for the first two
periods 1912 to 1936.

Once suitable simplifications have been made, the distribution of the stochastic
model of innovations and improvements can be determined. The improvements occur
at random intervals, approximated by a Poisson process with the same average rate of
occurrence; similarly innovations occur at the Poisson rate determined by their aver-
age rate of occurrence. The increases in productivity at successive improvements are
modelled by a sequence of independent random variables whose diminishing size is
modelled by a negative exponential function of whatever measure of the course of
events (say, the passage of time) has been selected. Once values for these parameters
have been chosen, the overall sequence of events is specified.

Summarising the experience in petroleum refining

In mathematics, the literature that attracts us is that of stochastic processes, particu-
larly Markov processes. Within Markov processes, a natural class to focus upon is

Regime II
4 I

Regime [

T T T T T T
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Figure 1. Evolution of productivity through innovations and improvements in the petroleum
cracking industry for the period 1912 to 1936
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those which exhibit ‘jumps’ from one regime to another. Such processes, usually
called ‘piecewise deterministic processes’ (Davis, 1984) or ‘jump Markov
processes’ arise naturally in many applications (such as dam theory, queueing
theory, etc). They have been studied extensively in the area of stochastic control, in
which a process is controlled so as to achieve a stated objective (see Vermes (1985)
and Davis (1986) for a comprehensive introduction). A systematic mathematical
study of the processes can be found in Jacod and Skorohod (1996). The statistical
data upon which we draw for this paper indicate that the underlying industrial
activities can be reasonably approximated by such a jump Markov process. Here we
focus on elementary aspects of the process so that the necessary mathematical tech-
niques are more than adequately covered by elementary texts, such as Grimmett and
Stirzaker (2001).

Given our mathematical formulation, in order to summarise the experience of the
petroleum refining industry in carrying out its innovations and improvements, we
need merely to specify the date at which the statistical process commenced and the
average values of four parameters: the average rate of innovation, the average rate of
improvement, the average size of improvement if it were to occur immediately after
an innovation, and the rate at which the expected value of subsequent improvements
diminishes in size. In the case of cracking in petroleum refining, the date of the first
innovation was 1911/1912; it is this date on which the model’s trajectory takes off.
The values of two of the four parameters, in averages per year, are estimated from
the data in Tables 1 and 2: there were four innovations over the entire period of 75
years, yielding an average of one innovation for every 19 years; or, as a rate, 0.05
innovations per year. Over the same interval, there were 20 improvements, or, more
accurately, when the multiple sets of improvements in the middle of the fourth
regime are admitted, 19 single improvements and a single cluster of improvements.
Counting the cluster as one improvement, the average rate of improvement was 0.26
per year.

The third and fourth parameters can also be calculated from the data in Tables 1
and 2. We model each improvement as an independent realisation of a positive
random variable X multiplied by exp(—p7), where 7 is the time since the most recent
innovation and p is a positive constant. We make no assumptions about the distribu-
tion of X, as the only parameter that we need for our calculations is its mean. The
parameter p is estimated by a linear regression of the logarithm of the increase in
productivity against the time since the most recent innovation at each improvement.
The value obtained this way is 4%. We then use this value of p to ‘correct’ the
increases in productivity at each improvement and take the average to produce an esti-
mate for the expected value of X. This yields a value of 22%, representing the
expected size of the first improvement occurring immediately after the innovation.
This corresponds to an expected value of 21% if the improvement occurs one year
after the innovation.

The final equation of the mathematical model in Appendix 1 (Equation (1)) spec-
ifies the average rate of increase in productivity predicted by the stochastic process
generating innovations and improvements. As one would expect, this predicted rate
increases if the rate of improvements or the rate of innovations increases. It decreases
if we increase the parameter p that measures the decline in the size of improvements
with time since the most recent innovation. In Table 3, we compare estimates from
this equation with true values at four dates: 10 years, 25 years, 50 years and 75 years
after the beginning of the process.
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Table 3. Comparison of predicted and actual rates of increase of productivity

Length of time interval Predicted rate of increase Actual rate of increase
10 years 0.05 0.05
25 years 0.04 0.05
50 years 0.04 0.06
75 years 0.04 0.04

Notes: This table is reported to only one significant figure and so disguises a systematic downwards bias in
our estimates. In fact, in these data, the final regime appears to be of a somewhat different nature to
previous regimes. This is not, of course, reflected in our model, which treats all regimes as having the same
(random) description.

Conclusions

The correspondence between the theoretical and actual data on innovations and
improvements in petroleum refining is surprisingly good (although the figures in
Table 3 are only reported to one significant figure, a more careful analysis would
reveal a systematic underestimate of the true rate of increase in productivity). What is
clear is that our model does capture the essential features of the data.

It would be interesting to see if the development and application of other industrial
technologies followed the same trajectory as that of cracking in the petroleum refining
industry, and, if so, if their parameter values — their summary statistics — were of simi-
lar orders of magnitude. However, even if economists are not to be graced with
comparative data from other industries, they might settle for less expansive results
derived from studies of smaller entities than an entire industry. Considering only
petroleum refining, it might be possible to chart the technological history of another
geographical area (besides the United States, where the ‘best practice’ provided us
with our observations) or of a single company (rather than the universe of innovators
and improvers). But these are, perhaps, matters for future investigations into the
nature of technological change.
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Appendix 1. The mathematical model

We model the increase in productivity as a stochastic process. This process exhibits jumps
whenever an improvement takes place. The size of the jump depends on the time since the last
innovation. We model the improvements as taking place according to a Poisson process of rate
u. Innovations take place at a rate A. Suppose that an improvement takes place at a time 7. Let
us write P(z—) for the productivity immediately before the improvement, then P(f) = ™)
P(t-), where t(7) is the time since the most recent innovation and the random variable 7 is to
be specified. We see from Table 2 that there is no obvious pattern to the size of improvements
except that, on average, they decay as the time since the most recent innovation increases. We
therefore model them as 7(s) = Xe P, where X is a positive random variable and p is a
constant.

Let us denote the times of improvements by 7. We shall calculate the expected value of

R(T) S 21<r 1(T(#;)). This then provides the estimate P(7) ~ P(0)eRD for large times T. It is
worth making some remarks about our choice of model. First, it might seem more natural to
model directly percentage increases at each improvement. However, the corresponding
model, in which percentage increases are modelled in the same way as r(s) above, does not
have a closed-form expression for the expected productivity at time 7, or indeed for any
obvious function of it. The disadvantage of this approach is that, although over long time
periods the error in the estimate for the average rate of increase in productivity may be a
small percentage of the true value, the corresponding estimate for the actual increase in
productivity can be large (because of the exponentiation). By estimating R(7) instead of
KD we are introducing a systematic downward bias in our estimate for productivity. We
have followed this route because it provides a closed-form solution.

Let us turn then to the calculation of the expected value of R(T), denoted E[R(T)]. We
proceed in two stages:

Step 1: a single regime of length t

The first step is to consider just a single regime of length ¢. Let us write R (f) for the
sum 2 1< 1(T(%;)), representing the logarithm of the increase in productivity over the regime
and NV, for the number of improvements during the regime. In our model N, has a Poisson distri-

bution with parameter ut. If we condition on N, = n, then the times of the improvements can be

realised as n independent uniformly distributed random variables on [0,/]. Now if U is
uniformly distributed on [0.£], then

BTN =E[% ] =E [X]ﬁ(l _e,

as, in our model, X is assumed to be independent of the time of the improvement. Since E [N,]
= ut, we obtain
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E[Ry(N]=——(1=e").

HE[X ]
p
Step 2: multiple regimes

We now suppose that innovations occur according to a Poisson process with a rate 1. Suppose
that M7 innovations occur during the time interval [0,7]. Notice that this results in My + 1
regimes and we denote the corresponding values of R by Rél) ,R(()z) ,...,R(gM’H). Then, condi-
tioning on M7, we obtain

E[R(T)] i E"’HRO“’IM (M =]
= E =n =n
< % T E T

= i(n +1)JE[R§>|MT =n|P[M; =n]
n=0
= AT HE[X] (1 _e—pT)
p

S rn wt MBLX) e D)
+r;(n+l)J(')F(T—s)l ) (1-e ™)ds a—

where we have used the fact that, conditional on My = n, the first innovation occurs at a time
distributed as the minimum of » independent uniformly d1str1buted random variables on [0,7].

It is a tedious, but easy, exercise to evaluate this expectation. Note first that, for a positive
parameter o,

=a+l1-¢°

© n a
z(n+l)a e
n=1 n

The first term in the summation in the last line above is given by this expression with o = AT.
To evaluate the second term we make the substitution s — 7 — s in the integral, integrate by
parts and then interchange the order of summation and integration to obtain

n(T (AT)"e™ T

Z< ) e VAL
n=1
= e_(“p)T';(n +1)—(AZ!) Jj-m?epsds

o~APIT Z(” +1) (/\)' %.nepT _J(.)Tpsnepsdsg

(A ) e o (e (DA e ™ s
Z( mde 4 ﬁ ZITe ds

T
= AT +1-e7 —pe_(A +p)T_L) (As +1 —e ) P)s g,

Another integration by parts yields the value of this final integral and then combining
the above and rearranging yields
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IE[X]IJD P (_ -a+pr\d
E [R(T)] = T+A+p(1 o0 )H

In order to obtain a prediction for the rate of increase in productivity over a time interval
of length T years beginning at the start of our data, we simply divide this by 7 to obtain

5 RO E[Xu e\
HT T(“p)E)‘ A+p(1 e )Et @

It is this prediction that appears in Table 3. Notice that as the time 7 increases to infinity this
predicted rate converges to a constant, E[X]Au/(A + p).






